
GABRIEL FEUERWERKER

SIMULAÇÃO COMPUTACIONAL DA LÓGICA
DE CONTROLE DE UMA BANCADA DIDÁTICA

São Paulo
2021

GABRIEL FEUERWERKER

SIMULAÇÃO COMPUTACIONAL DA LÓGICA
DE CONTROLE DE UMA BANCADA DIDÁTICA

Trabalho apresentado à Escola Politécnica

da Universidade de São Paulo para obtenção

do T́ıtulo de Engenheiro Mecatrônico.

São Paulo
2021

GABRIEL FEUERWERKER

SIMULAÇÃO COMPUTACIONAL DA LÓGICA
DE CONTROLE DE UMA BANCADA DIDÁTICA

Trabalho apresentado à Escola Politécnica

da Universidade de São Paulo para obtenção

do T́ıtulo de Engenheiro Mecatrônico.

Orientador:

Prof. Dr. Fabŕıcio Junqueira

São Paulo
2021

Dedicado à minha famı́lia e ami-
gos, que me apoiaram durante a
elaboração do trabalho e durante
todo o curso na Escola Politécnica.

AGRADECIMENTOS

Ao orientador Prof. Dr. Fabŕıcio Junqueira pelo seu apoio, incentivo, dedicação e
orientação que foram essenciais para a realização deste projeto.

À FESTO por disponibilizar o modelo 3D utilizado neste trabalho.

Aos meu pai, Roberto Moisés Feuerwerker, à minha mãe, Tatiana Feuerwerker, e à
minha irmã, Mariana Feuerwerker, por serem minha fonte de motivação e sempre acredi-
tarem em mim, em especial nos momentos em que me faltou força durante a graduação.

À minha namorada, Maria Clara Santos Braune, por incentivar o melhor em mim e
por entender os momentos em que me ausentei por dedicação a este trabalho.

Aos docentes da Escola Politécnica, em especial aos que me instrúıram ao longo do
quarto e quinto ano, que se desdobraram para manter as atividades escolares da melhor
forma posśıvel durante o atual cenário pandêmico.

Aos meus colegas de sala pelo companheirismo ao longo de toda esta jornada e que
sempre me estenderam a mão quando foi preciso.

RESUMO

A implementação do código de controle do CLP na bancada MPS FESTO na disci-
plina PMR3305 - Sistemas a Eventos Discretos - é o momento em que o aluno tem a
possibilidade de testar e visualizar o resultado do seu trabalho. Entretanto, as bancadas
só podem ser acessadas no laboratório da POLI, o que foi dificultado durante a pandemia
do novo Corona Vı́rus. Neste contexto, o objetivo desse trabalho é projetar e implementar
um modelo virtual de uma das bancadas MPS FESTO e uma sistemática para os alunos
usarem juntamente ao CodeSys, de forma que possam testar a lógica de controle desenvol-
vida em SFC - Sequential Function Charts - antes de ser implementado presencialmente
no laboratório de PMR3305 - Sistemas a Eventos Discretos.

Palavras-Chave – Petri Net, OPC-UA Protocol, Visual Components, FESTOWorks-
tation, CodeSys, Digital twin, Programming CLP

ABSTRACT

The implementation of the control code of CLP in the MPS FESTO bench during
the PMR3305 discipline - Systems to Discrete Events - is a moment where the student
has the possibility to test and visualize the results of his own work. Nonetheless, the
benches can only be acessed in a POLI laboratory, which has been hampered during the
pandemic of the Corona Virus. In this scenario, the objective of this work is to simulate
virtually the MPS FESTO benches, in a way that the code developed in SFC - Sequential
Function Charts - that refers to the control system, can be studied and validated before
being implemented in person in the PMR3305 laboratory - Systems to Discrete Events.

Keywords – Petri Net, OPC-UA Protocol, Visual Components, FESTO Worksta-
tion, CodeSys, Digital twin, Programming CLP

LISTA DE FIGURAS

1 Módulo Handling . p. 10

2 Sinais Handling . p. 10

3 Estrutura do sistema descrito . p. 13

4 Estrutura do programa descrito até o passo3 p. 16

5 Estrutura do programa descrito do passo3 ao passo6 p. 17

6 Estrutura do programa descrito do passo6 ao passo12 p. 18

7 Vista frontal do modelo final utilizado p. 19

8 Vista lateral do modelo final utilizado p. 19

9 Vista superior do modelo final utilizado p. 20

10 Coordenadas globais de referencia do projeto p. 22

11 Configuração do Matrikon FLEX OPC UA Server utilizada neste trabalho p. 25

12 Configuração do Symbol Configuration utilizada neste trabalho p. 25

13 Exemplo de painel para monitoramento e edição das variáveis p. 26

14 Conexão do cliente do Visual Components com o servidor do CodeSys . p. 27

LISTA DE TABELAS

1 Partes da Norma IEC 61131 . p. 6

2 Descrição das FESTO MPS stations p. 9

3 Sinais de entrada e sensores . p. 11

4 Sinais utilizados no programa . p. 15

5 Posição dos planos cartesianos com relação às coordenadas globais . . . p. 23

6 Variáveis pareadas em Simulation to server p. 28

7 Variáveis pareadas em Server to simulation p. 28

SUMÁRIO

1 Introdução p. 1

1.1 Contexto . p. 1

1.2 Motivação . p. 3

1.3 Objetivos . p. 3

1.4 Organização do texto . p. 3

2 Revisão Bibliográfica p. 4

2.1 Controladores Lógico Programáveis . p. 4

2.2 Linguagens de Programação para CLP’s p. 6

2.3 CodeSys . p. 7

2.4 Visual Components . p. 7

2.5 Protocolo de Comunicação OPC-UA p. 8

2.6 Bancada MPS FESTO . p. 8

3 Metodologia p. 12

3.1 Requisitos . p. 12

3.2 Descrição do Sistema . p. 12

4 Implementação do Projeto p. 14

4.1 Implementação da Lógica de Controle p. 14

4.1.1 O Programa em SFC . p. 14

4.2 Simulação 3D . p. 18

4.2.1 Modelo utilizado . p. 18

4.2.2 Estrutura da animação . p. 20

4.2.2.1 Articulações . p. 20

4.2.2.2 Servos controladores p. 20

4.2.2.3 Sensores . p. 21

4.2.2.4 Sinais . p. 23

4.2.2.5 Python Script . p. 24

4.3 Comunicação OPC-UA . p. 24

4.3.1 configuração codesys . p. 24

4.3.2 configuração matrikon . p. 26

4.3.3 configuração visual components p. 27

5 Conclusão p. 29

Referências p. 30

1

1 INTRODUÇÃO

Com a evolução da computação, através de hardwares e softwares com velocidades de

processamento e armazenamento cada vez maiores, a humanidade foi capaz de resolver

problemas complexos de forma mais rápida, como explicado por (HARARI, 2015). Uma

das formas de se resolver problemas complexos é por meio da simulação computacional,

como em (NEUMANN, 1947) que é uma das primeiras publicações sobre o tema. Nela

os autores abordam o uso da simulação computacional para resolver problemas proba-

biĺısticos, no caso através de um método - Monte Carlo Simulation.

Com o passar dos anos, o desenvolvimento da computação possibilitou uma ampli-

tude maior de opções para simulações em diferentes áreas do conhecimento. Dentre esta

gama de aplicações começou-se a utilizar o recurso das simulações computacionais para

propósitos educacionais, tanto em ensino superior quanto básico, como pode ser observado

em (FONTOURA, 2019), onde é proposto um simulador do processo de produção de cer-

veja a ser utilizado pelos alunos de graduação e pós-graduação de engenharia qúımica da

Universidade de Vassouras. A intenção é que os alunos possam acompanhar as respostas

do processo de produção da cerveja sem a necessidade de implementá-lo, economizando

tempo e investimento financeiro.

1.1 CONTEXTO

Com a pandemia causada pelo novo Coronav́ırus (SARS-Cov-2) e a adoção do dis-

tanciamento social proposta por (DORIA, 2020) para o Estado de São Paulo, diversas

atividades presenciais - como comércio e ensino - foram impactadas e precisaram ser rein-

ventadas. No varejo, houve um aumento na demanda do chamado comércio eletrônico,

ou e-commerce, como explicado por (ALVARENGA, 2021). Na educação, escolas e facul-

dades tiveram suas portas fechadas, como foi o caso da Universidade de São Paulo (USP)

desde o anuncio de (AGOPYAN, 2020).

Na Escola Politécnica da USP (POLI), para não comprometer o calendário escolar

2

e o aprendizado dos alunos, as disciplinas tiveram que se adaptarem ao modelo virtual

de ensino. Aulas expositivas puderam ser substitúıdas por videoconferências utilizando

ferramentas como Google Meets e Zoom. Provas e entregas de trabalho foram realizadas

por plataformas digitais de ensino, como o e-disciplinas. Porém, aulas práticas, como

experiências laboratoriais, exigiram maior expertise por parte dos docentes devido à difi-

culdade de se adaptar uma atividade laboratorial prática em uma atividade virtual sem

comprometer o aprendizado.

A disciplina Sistemas a Eventos Discretos (PMR3305) lecionada no sexto semestre

do curso de graduação em engenharia mecatrônica da POLI é dividida em parte teórica

e prática como descrito em (USPDIGITAL, 2016). De forma resumida, na parte teórica

são apresentados aos alunos conceitos fundamentais de sistemas a eventos discretos, mo-

delagem de sistemas de controle sequenciais, Redes de Petri para lógica de controle e

metodologia de projeto de sistemas de controle. Enquanto que na parte prática, os alunos

participam da atividade de construção de modelos de sistemas de automação e análise

destes modelos por simulação discreta, desenvolvimento de programas de controle para

controladores programáveis e, por fim, teste destes programas nas bancadasMPS FESTO.

Estas bancadas didáticas simulam uma pequena linha de produção e é nesta etapa em

que os alunos visualizam o resultado do trabalho de estruturar, modelar e implementar

a lógica de controle; sendo este um momento de aprendizado e satisfação dos alunos da

disciplina.

No cenário de pandemia apresentado, com aulas remotas, o corpo docente de PMR3305

teve a tarefa de lecionar a disciplina de forma virtual. Nos anos de 2020 e 2021, a parte

prática consistiu em modelar as Redes de Petri com base nos requisitos das bancadas e

simular a Rede de Petri no software PIPE para verificação das propriedades e existência

de travamentos. A validação final, que costumava ser a implementação nas MPS FESTO

em laboratório, foi realizada pelo professor da disciplina que, por conta da experiência, já

sabia se a Rede de Petri condizia com o funcionamento da bancada ou não.

Em meio a este cenário, os alunos de PMR3305 não tiveram a experiência de testar e

visualizar o funcionamento da lógica de controle implementada na bancada, uma vez que

estavam restritos às aulas remotas.

3

1.2 MOTIVAÇÃO

O trabalho desenvolvido apresenta motivação acadêmica e pessoal por parte do au-

tor que, como aluno do curso de engenharia mecatrônica da Escola Politécnica da USP,

afetado pelas dificuldades impostas pelo ensino à distância durante a pandemia do SARS-

Cov-2, gostaria de deixar aos demais alunos desta Escola um trabalho que possa ser

explorado e desenvolvido visando a melhoria cont́ınua da qualidade de ensino da POLI e

da formação de colegas engenheiros.

1.3 OBJETIVOS

Este trabalho foi desenvolvido visando projeto e implementação de uma ferramenta

que possibilite os alunos de PMR3305 a realizarem atividades laboratoriais sem a neces-

sidade da presença f́ısica na Escola.

Ao longo do texto será apresentado o processo de desenvolvimento de um sistema

funcional da simulação computacional de uma bancada MPS FESTO, de modo que os

discentes possam testar a implementação da lógica de controle em linguagem SFC (Sequen-

tial Function Chart), através da visualização do funcionamento de um modelo animado

da bancada MPS FESTO.

1.4 ORGANIZAÇÃO DO TEXTO

No caṕıtulo 2 é apresenta a revisão bibliográfica sobre as bases que apoiam este

projeto.

No caṕıtulo 3 é feita a descrição do projeto, detalhando o sistema proposto.

No caṕıtulo 4 é feita a descrição da implementação do projeto.

Por fim, no caṕıtulo 5 é apresentada a conclusão do projeto.

4

2 REVISÃO BIBLIOGRÁFICA

Para alcançar os objetivos deste trabalho, foi realizada uma revisão bibliográfica sobre

tópicos da disciplina PMR3305, como controladores lógico programáveis e suas principais

linguagens de programação. Também foram estudados os softwares CodeSys e Visual

Components, por serem as ferramentas de implementação do sistema. Além do estudo

sobre as bancadas MPS FESTO, que é o objeto a ser digitalizado.

2.1 CONTROLADORES LÓGICO PROGRAMÁVEIS

Existem registros de máquinas que operam com controle de sistema sequencial desde

o século XVIII, como citado em (MIYAGI, 1996), as máquinas de tear automáticas com

cartões perfurados ou uma moenda automática por esteira já são exemplos de sistemas a

eventos discretos.

No ińıcio, o controle de SED poderia ser reduzido por um “operador”, um “dispositivo

de controle” e um “objeto de controle”. Com a evolução tecnológica, a partir dos anos

50, os SED passaram a trabalhar com conceitos de “monitoração” e “atuação”. Ou seja,

o “operador” irá acompanhar o sistema por um painel de monitoramento e o objeto de

controle será alterado por um sistema de atuação, que responde a um dispositivo de

controle.

Em 1968, a divisão Hydramatic da General Motors (Estados Unidos) divulgou uma

especificação técnica de dez itens (TODORA, 2009) para buscar empresas com interesse

de produzir o controlador programável. São eles:

• Os controladores devem ser facilmente programáveis, com operações sequenciais

facilmente alteráveis;

• Devem ser de fácil manutenção;

• Devem possuir caracteŕısticas operacionais de alta confiabilidade;

5

• Devem possuir dimensões menores que os painéis à relés para diminuição de gastos;

• Deve ser apto a mandar dados para um sistema central;

• Deve ter preço competitivo em relação aos dispositivos à relés;

• Deve receber sinais de entrada na ordem de 115V CA;

• Deve ser capaz de enviar sinais de sáıda de 115V CA;

• Devem possibilitar expansões na forma de módulos para atender sistemas de maior

porte;

• Cada unidade deve possibilitar a expansão de no mı́nimo 4000 palavras na memória

do programa.

Assim, em 1969, a Bedford Associates (Estados Unidos), lançou o primeiro Controla-

dor Lógico Programável chamado 084 (BALL, 2015) seguindo as especificações divulgadas

pela divisão Hydramatic. A partir dos anos 70, as novas gerações de controladores que se-

guiam essas especificações foram batizados de CLP’s - Controladores Lógico Programáveis.

Como explicado em (MARTINS, 2020), um CLP é um dispositivo eletrônico para au-

tomação. Composto por uma C.P.U., memória e dispositivos (Input/Output), o CLP

é programável afim de realizar tarefas de inter travamento, temporização, contagem,

operações matemáticas, controle em malha aberta ou malha fechada; podendo contro-

lar sistemas industriais complexos.

Como explicado em (LEWIS, 2011), com a difusão dos CLP’s surgiram diversas nor-

mas para padronizar a programação destes controladores, como a francesa NFC-03-190

e a alemã DIN 40719-6. Entretanto, nenhuma destas normas foi tão impactante quanto

a IEC61131 da Electrotechnical Comission, a primeira a receber aceitação na industria

mundial. Para seu desenvolvimento foram montados times de especialistas, conforme

(IEC, 2003). Como indicado na Tabela 1, o time 3 ficou responsável pela tarefa de desen-

volver e padronizar as linguagens de programação dos CLP’s, o que ficou conhecido como

norma IEC 61131-3.

6

Tabela 1: Partes da Norma IEC 61131

Time T́ıtulo Conteúdo

1 General Information Terminologias e conceitos

2 Equipment requirements and

tests

Verificação e fabricação mecânica e eletrônica

3 Programmable Languages Estrutura das linguagens do CLP

4 User guidelines Guia para escolha, uso e manutenção do CLP

5 Communications Conectividade com outros dispositivos

6 Reserved Está reservado

7 Fuzzy Control Programming Funcionalidades de software

8 Guidelines for the Application

and Implementation of Pro-

gramming Languages

Guias para implementar as linguagens da IEC

1131-3

2.2 LINGUAGENS DE PROGRAMAÇÃO PARA CLP’S

A normal IEC 61131-3 (IEC, 2003) separa as linguagens em dois grupos: Linguagens

Textuais e Linguagens Gráficas. As Linguagens Textuais padronizadas são a IL (Instruc-

tion List) e a ST (Structured Text). A IL é uma lista simples de comando, executando o

conjunto de funções declaradas de forma sequencial. Já a ST é mais complexa, sendo uma

linguagem de alto ńıvel capaz de estruturar programas com processamentos numéricos,

operações de comparação e comandos. As Linguagens Gráficas padronizadas são a LD

(Ladder Diagram) e a FBD (Function Block Diagram). A LD é uma linguagem bas-

tante difundida e se assemelha à notação de diagramas de lógicas de relés. Já a FBD é

constitúıda de blocos de funções que processam fluxos de dados.

A disciplina PMR3305 utiliza a linguagem SFC (Sequential Function Chart) para

automação das Bancadas FESTO. Como discutido em (MIYAGI, 1996), a SFC não é

considerada uma linguagem e sim um elemento comum de descrição pela IEC 61131-3.

Entretanto, por ser tratada como linguagem pelos principais softwares para programação

de CLP’s - como o CodeSys - e por ser mencionada por (MIYAGI, 1996) como uma

linguagem gráfica de programação, este trabalho irá se referir à SFC como linguagem.

A SFC é uma linguagem de programação gráfica baseada em GRAFCET, na qual o

7

programador consegue definir o comportamento sequencial do sistema de controle. Por

ser uma linguagem de fácil utilização, ter poder de descrever problemas dinâmicos e por

evitar ambiguidade, (BONFATTI; MONARI; SAMPIERE, 1999) descreve a SFC como

uma das principais linguagens.

2.3 CODESYS

Criado pela empresa S3 – Smart Software Solutions, o CodeSys é um software de

controle e automação de CLP’s. Este programa possui uma versão gratuita e também é

utilizado em cursos de graduação da Escola Politécnica da Universidade de São Paulo.

Contudo, não apresenta uma interface gráfica tri-dimensional que permita a observação

dos processos.

O trabalho de (VOGEL et al., 2015) apresenta uma implementação completa desta

ferramenta juntamente com um simulador para criar um mecanismo de manejo de placas

de cultura utilizadas em laboratório por meio da lógica de controle de Redes de Petri.

O CodeSys permite o interfaceamento com softwares de animações 3D, como o Visual

Components, por possuir um servidor para o estabelecimento de comunicação OPC-UA.

2.4 VISUAL COMPONENTS

O Visual Components é um software para simulação de manufaturas 3D. Segundo o

site institucional (COMPONENTS, 2021), o software foi desenvolvido em 1999 por Scott

Walter, Mika Anttila e Juha Renfors com o objetivo tornar a simulação de manufaturas

3D mais acesśıvel às empresas do setor.

Em 2016, o software recebeu uma atualização, sendo renomeado como Visual Compo-

nents 4.0. Nessa nova versão, a aplicação conta com uma Python API para programação

da simulação e compatibilidade para estabelecer comunicação com server’s OPC-UA.

O Visual Components 4.0 existe apenas em versões pagas, existindo um servidor de

licença dentro da Escola Politécnica para uso educacional.

8

2.5 PROTOCOLO DE COMUNICAÇÃO OPC-UA

O protocolo de comunicação OPC-UA é um padrão para troca de dados dentro do

ambiente de automação industrial, desenvolvido por (OPC-FOUNDATION, 2021). Para

funcionamento desta especificação é necessário estabelecer um servidor - OPC server - e

seus clientes - OPC Client - sendo viável interagir com mais de um cliente simultanea-

mente.

Como explicado em (OPC-FOUNDATION, 2021), inicialmente o padrão foi desen-

volvido apenas para sistemas Windows. Tal restrição fez com que a OPC Foundation

aprimorasse o protocolo, criando a especificação OPC-UA, a qual apresenta uma estru-

tura de plataforma aberta, sendo compat́ıvel com qualquer sistema.

Para mais informações sobre o protocolo de comunicação OPC-UA, pode-se consultar

o caso de uso (ROSSOW, 2018) onde foi realizado a implementação da comunicação entre

duas ferramentas de modelagem, o OpenModelica e o Xcos. Ou pode-se consultar o

próprio site (OPC-FOUNDATION, 2021)

2.6 BANCADA MPS FESTO

As bancadas MPS FESTO simulam um modulo de produção individual, onde cada

um apresenta uma função diferente. As bancadas pode ser consultadas na Tabela 2,

constrúıda com base nas informações dadas em (POLA, 2013). Vale pontuar que estão

presentes no laboratório de Sistemas a Eventos Discretos apenas as bancadas 1,2,3,5 e 7.

9

Tabela 2: Descrição das FESTO MPS stations

Bancada Nome Função

1 Distributing Fornecer peças de trabalho

2 Testing Realiza a verificação da peça de acordo com

critérios estabelecidos

3 Processing Transporta as peças por uma mesa giratória,

realiza a indexação da peça e realiza uma si-

mulação de usinagem no orif́ıcio da peça

4 Bu↵er Armazenar até 5 peças

5 Sorting Realiza a classificação das peças e as separa por

tipo ou por cor

6 Separating Realiza a separação de peças, baseado na pro-

fundidade do orif́ıcio, ou na altura da peça

7 Handling Realiza a manipulação de peças

8 Pick and Place Manipula peças do tipo medidores

9 Fluidc Muscle Press Realiza o controle de pressão exercido pelo

músculo pneumático

10 Punching Responsável por furar a tampa do cilindro,

Cada bancada é composta por um controlador, um painel de controle e uma planta.

Considerando o principal objetivo deste trabalho, que é o desenvolvimento de um sistema

funcional de simulação computacional de uma das bancada, os principais objetos de estudo

nas bancadas são os sensores, atuadores e sinais gerados. Para isso foram levantados, com

base no (POLA, 2013), os atuadores, sensores e sinais da bancada Handling, que será o

módulo de implementação do trabalho.

O objeto do trabalho será o módulo Handling, responsável por manipular as peças

entre células através de uma garra. Conforme Figura 1, o módulo Handling é composto

por uma garra com movimentação de translação em dois eixos, sendo posśıvel deslocar a

peça de trabalho do Módulo bu↵er à rampa ou à próxima estação.

10

Figura 1: Módulo Handling

FONTE: (POLA, 2013)

A Figura 2 mostra os sinais de entrada e sáıda do módulo Handling

Figura 2: Sinais Handling

FONTE: (POLA, 2013)

Já a Tabela 3 relaciona os sensores da planta com os sinais de entrada.

11

Tabela 3: Sinais de entrada e sensores

Sinal Sensor

DI 0 Sensor de posição no bu↵er

DI 1 Sensor de posição no curso horizontal da garra perpendicular

ao bu↵er

DI 2 Sensor de posição no curso horizontal da garra perpendicular

à próxima estação

DI 3 Sensor de posição no curso horizontal da garra perpendicular

à rampa

DI 4 Sensor de posição para medir o avanço da garra

DI 5 Sensor de posição para medir recuo da garra

DI 6 Sensor óptico na garra que identifica se a peça de trabalho

possui cor ou não (cor preta)

DI 7 Sinaliza se a próxima estação de trabalho está livre

12

3 METODOLOGIA

O sistema deve simular o funcionamento da bancada MPS FESTO. Para isso, deve

existir um modelo capaz de simular os atuadores, sensores e sinais de entrada e sáıda da

bancada; e que troque informações com o software em que a lógica de controle do CLP

está implementada.

3.1 REQUISITOS

Dado que o objetivo do trabalho é simular o funcionamento da bancada MPS FESTO,

o projeto deve:

• Trabalhar com um modelo 3D similar à bancada f́ısica Handling existente no labo-

ratório de Sistemas a Eventos Discretos.

• Reproduzir a animação da movimentação da bancada

• Gerar sinais de sáıda para o emulador do CLP, similares aos dos sensores reais da

bancada, detectando peça de trabalho ou posições pré estabelecidas dos atuadores.

• Transformar sinais de controle, provenientes do emulador do CLP, em movimento

dos atuadores ou peça de trabalho.

3.2 DESCRIÇÃO DO SISTEMA

Primeiro, deve-se desenvolver o programa da lógica de controle do CLP da bancada

escolhida. Para isso, pode-se primeiro modelar a lógica de funcionamento em Rede de

Petri para identificar a existência de travamentos.

Para receber e enviar sinais para a animação, deve-se estabelecer um servidor OPC-

UA. No caso da utilização do CodeSys como software de programação do CLP, basta

adicionar a aplicação Symbol Configuration, selecionar as variáveis correspondentes aos

13

sinais de entrada e sáıda do controlador e compilar. Em seguida, deve-se adicionar a

aplicação Matrikon FLEX OPC UA server e configurar os parâmetros desejáveis para

se estabelecer a comunicação OPC-UA, como a interface de Ethernet, endereço de IP,

número da porta a ser utilizada, número de sessões requeridas, taxa de ciclo do servidor,

politica de segurança e o tipo de autentificação que será requerida dos clientes OPC.

No programa em que a animação foi implementada, deve-se solicitar acesso ao servidor

OPC-UA. No caso da utilização do Visual Components, deve-se ir na aba de conectividade,

adicionar um novo servidor OPC-UA, indicar o endereço do servidor desejado, informar o

tempo de leitura desejado e parear as variáveis do programa onde a lógica de controle foi

implementada com os sinais configurados no modelo 3D da bancada. Por fim, a animação

pode ser inicializada.

Para sumarizar, a estrutura do sistema descrito está representada na Figura 3.

Figura 3: Estrutura do sistema descrito

14

4 IMPLEMENTAÇÃO DO PROJETO

Para implementação do projeto foram utilizados os software Visual Components, Co-

deSys e Matrikon. No Visual Components foi modelado a bancada Handling com seus

respectivos sensores e atuadores. Também foi nesse software que foi implementado o

código em Python que gera a animação 3D do modelo. No CodeSys foi implementado a

lógica de controle em SFC. Já o Matrikon foi utilizado para monitorar os sinais trocados

entre o CodeSys e o Visual Components por protocolo OPC-UA, com a finalidade de

facilitar a identificação dos erros durante a implementação.

4.1 IMPLEMENTAÇÃO DA LÓGICA DE CONTROLE

A implementação da lógica de controle foi realizada no Codesys, através da linguagem

gráfica SFC. A escolha do software foi baseada sob duas abordagens: proximidade com

a experiencia real do laboratório, uma vez que este é o programa utilizado em sala de

aula; e compatibilidade para estabelecer comunicação OPC-UA em sua mais nova versão.

A versão 2.3 do Codesys é a utilizada pelos alunos na matéria PMR3305. Porém, neste

projeto, será utilizada a versão 3.5, também compat́ıvel com o controlador utilizado na

disciplina, o CPX-CEC. Entretanto, apenas a versão 3.5, possui um servidor para comu-

nicação OPC-UA.

4.1.1 O PROGRAMA EM SFC

O programa desenvolvido é uma simplificação do programa original disponibilizado

pela FESTO, dado que o foco da simulação computacional proposta neste projeto é a

movimentação dos atuadores responsáveis pela movimentação do módulo, sendo ignorados

os sinais relativos a LED’s, botões e telas. Sendo assim, os sinais utilizados no programa

são apresentados na Tabela 4.

15

Tabela 4: Sinais utilizados no programa

Sinal função

DI 0 Indica a disponibilidade da peça de trabalho no bu↵er

DI 1 Indica que o módulo esta na posição do bu↵er

DI 2 Indica que o módulo esta na posição da próxima estação

DI 3 Indica que o módulo esta na posição da rampa

DI 4 Indica que a garra esta avançada

DI 5 Indica que a garra esta recuada

DI 6 Indica se a peça de trabalho possui cor (não é preta)

DI 7 Indica que a próxima estação de trabalho está livre

DO 0 Move o módulo para a próxima estação

DO 1 Recua o módulo para a estação anterior

DO 2 Avança a garra

DO 3 Abre a garra

DO 7 Indica que a estação Handling está ocupada

O programa desenvolvido conta com 13 estados. O primeiro deles é o Init, o estado de

inicialização do programa, em que DO1 e DO7 são falsos. Com o sinal DI 0 verdadeiro -

disponibilidade da peça de trabalho no bu↵er - o programa avança ao passo0. No passo0

DO2 e DO7 são verdadeiros, gerando o comando de avanço da garra e indicando que a

estação esta ocupada. Quando o sinal DI4 for verdadeiro - indicando que a garra está

avançada - o programa entra no passo1. No passo1 DO3 é falso, encerrando o comando

de abertura da garra. Depois de 1 segundo, o programa entra no passo2, com DO2

falso, encerrando o comando de avanço da garra. Com DI5 verdadeiro, indicando o recuo

completo da garra, o programa entra no passo3. A estrutura do programa descrito até o

passo3 pode ser verificada na Figura 4.

16

Figura 4: Estrutura do programa descrito até o passo3

Após o passo3 existe duas transições. Se DI6 for verdadeiro, indicando cor (não

preta) na peça de trabalho, o programa entra no passo11. Caso contrario, com DI6 falso,

indicando não cor (preta) na peça de trabalho, o programa entra no passo4. Tanto no

passo11 quanto no passo4 DO0 é verdadeiro, gerando o comando para movimentação do

módulo para a próxima estação. A transição do passo11 para o passo12 é o sinal DI2, o

qual indica que o módulo está na posição da próxima estação. Já a transição do passo4

para o passo5 é o sinal DI3, que indica que o módulo está na posição da rampa. Tanto

no passo12 quanto no passo5 DO0 é falso, encerrando o sinal que movimenta o módulo

para a próxima estação. A transição do passo12 para o passo6 é a negação do sinal DI7,

indicando que a próxima estação de trabalho está livre. Já a transição do passo5 para o

passo6 é sempre verdadeira, uma vez que não existe uma condição que impeça a soltura

da peça de trabalho na rampa. A estrutura do programa descrito do passo3 ao passo6

pode ser verificada na Figura 5.

17

Figura 5: Estrutura do programa descrito do passo3 ao passo6

No passo6 DO2 é verdadeiro, gerando o sinal de avanço da garra. Com DI4 verdadeiro,

sinal gerado quando a garra está avançada, O programa entra no passo7, gerando DO3

verdadeiro, solicitando a abertura da garra. Depois de 1 segundo o programa entra no

passo9, onde DO2 é falso, parando o comando de avanço da garra. Com DI5 verdadeiro,

indicando o recuo da garra, o programa entra no passo10, onde DO1 é verdadeiro, recuando

a módulo para a estação anterior. Com DI1 verdadeiro, indicando que o módulo está na

posição do bu↵er, o programa retorna ao estado de Init. A estrutura do programa descrito

do passo6 ao passo12 pode ser verificada na Figura 6.

18

Figura 6: Estrutura do programa descrito do passo6 ao passo12

4.2 SIMULAÇÃO 3D

Para a simulação 3D da Bancada FESTO, foi escolhido o Visual Components. Este

é um software projetado para a modelagem e simulação de modelos 3D, com grande

aplicação na industria para planejamento de layout, simulação de produção e verificação

do funcionamento de CLP’s.

4.2.1 MODELO UTILIZADO

Para a simulação gráfica, foi utilizado o modelo em CAD do módulo Handling dispo-

nibilizado pela FESTO. As peças de trabalho foram constrúıdas com base nas dimensões

reais das utilizadas em laboratório. Também foi constrúıda uma bancada para apoio da

peça de trabalho antes desta entrar no bu↵er. O modelo final utilizado pode ser verificado

na Figura 7 (vista frontal), Figura 8 (vista lateral) e Figura 9 (vista superior).

19

Figura 7: Vista frontal do modelo final utilizado

Figura 8: Vista lateral do modelo final utilizado

20

Figura 9: Vista superior do modelo final utilizado

4.2.2 ESTRUTURA DA ANIMAÇÃO

A estrutura da animação é composta pela definição de articulações, servos controla-

dores, sensores e sinais. O comportamento da estrutura é definida em código de Python.

4.2.2.1 ARTICULAÇÕES

Foram quatro articulações definidas para a animação do modelo:

• Esteira Garra: movimento no trilho, deslocando do bu↵er à próxima estação.

• Elevador Garra: movimento de sobe e desce do braço.

• Garra 1: movimento de abre e fecha de um dos dentes da garra.

• Garra 2: movimento de abre e fecha do outro dente da garra.

A articulação Esteira Garra é a maior na hierarquia de movimentação, ou seja, todas

as outras articulações se movimentam em relação à esta. Em seguida vem a articulação

Elevador Garra, contendo o movimento das articulações Garra 1 e Garra 2.

4.2.2.2 SERVOS CONTROLADORES

Foram definidos três servos controladores para movimentar as articulações:

21

• Servo Esteira: controla o movimento da articulação Esteira Garra.

• Servo Elevador: controla o movimento da articulação Elevador Garra.

• Servo Garra: controla o movimento das articulações Garra 1 e Garra 2.

4.2.2.3 SENSORES

Foram definidos sete sensores para gerar os sinais de entrada do controlador:

• Sensor Dispońıvel: verifica a disponibilidade da peça de trabalho no bu↵er.

• Sensor Bu↵er: verifica se o braço está na posição do bu↵er.

• Sensor Prox Est: verifica se o braço está na posição da próxima estação.

• Sensor Rampa: verifica se o braço está na posição da rampa.

• Sensor Garra Avan: verifica se o braço está avançado.

• Sensor Garra Recu: verifica se o braço está recuado.

• Sensor Cor: verifica se a peça de trabalho tem cor (não preta).

Todos os sensores implementados no projeto são sensores de volume, onde deve ser

definida uma área de leitura do sensor, o intervalo de medição, a necessidade de se identi-

ficar algum material especifico e qual é o tipo de sinal atrelado. Todos os sensores foram

implementados com o mesmo intervalo de medição, no caso 0.01 segundos. O Sensor Cor

está programado para detectar apenas peças de cor azul.

Com relação a areá de atuação, ela é definida por dois eixos de coordenadas, se

formando entre os eixos X e Y.

A Figura 10 mostra a posição das coordenadas globais de referencia utilizadas no

projeto.

22

Figura 10: Coordenadas globais de referencia do projeto

A Tabela 5 descreve a posição dos dois planos cartesianos de cada sensor com relação

às coordenadas globais.

23

Tabela 5: Posição dos planos cartesianos com relação às coordenadas globais

Plano cartesiano Sensor correspondente X Y Z Rx Ry Rz

DIO 1 Sensor Dispońıvel -399 695 922 0 0 0

DIO 2 Sensor Dispońıvel -351 741 922 0 0 180

DI1 1 Sensor Bu↵er -420 718 1163 0 0 0

DI1 2 Sensor Bu↵er -362 718 1163 0 0 0

DI2 1 Sensor Prox Est -420 1082 1163 0 90 0

DI2 2 Sensor Prox Est -362 1082 1163 0 0 0

DI3 1 Sensor Rampa -420 907 1163 0 90 0

DI3 2 Sensor Rampa -362 907 1163 0 90 0

DI4 1 Sensor Garra Avan -375 568 921 0 0 0

DI4 2 Sensor Garra Avan -375 1254 921 0 0 0

DI5 1 Sensor Garra Recu -367 542 1110 0 0 0

DI5 2 Sensor Garra Recu -367 1254 1110 0 0 0

DI6 1 Sensor Cor -367 542 1110 0 0 0

DI6 2 Sensor Cor -375 1254 921 0 0 0

4.2.2.4 SINAIS

Foram definidos sete sinais de entrada:

• DI0: sinal booleano atrelado ao Sensor Dispońıvel.

• DI1: sinal booleano atrelado ao Sensor Bu↵er.

• DI2: sinal booleano atrelado ao Sensor Prox Est.

• DI3: sinal booleano atrelado ao Sensor Rampa.

• DI4: sinal booleano atrelado ao Sensor Garra Avan.

• DI5: sinal booleano atrelado ao Sensor Garra Recu.

• DI6: sinal booleano atrelado ao Sensor Cor.

24

Importante pontuar que não foi implementado o sinal relativo ao DI 7 da lógica de

controle implementada no CodeSys. Dado que o projeto é referente à simulação de apenas

uma bancada, o sinal DI7 será sempre falso, simulando como se a próxima bancada

estivesse sempre dispońıvel.

4.2.2.5 PYTHON SCRIPT

A ultima etapa da animação 3D consiste em desenvolver um código em Python para

programar os movimentos da bancada.

A biblioteca utilizada foi a vcScript para utilizar os métodos de animação do Visual

Components. No começo do código foram definidos os objetos.

O programa principal roda dentro da função OnRun() em laço até que a aplicação do

Visual Components se encerre. Os principais blocos do programa estão comentados para

facilitar a compreensão do código implementado.

O código desenvolvido pode ser encontrado acessando este link.

4.3 COMUNICAÇÃO OPC-UA

Para que o código implementado em SFC no CodeSys possa gerar uma lógica de

controle para a o modelo virtual da bancada MPS FESTO, é preciso estabelecer uma

comunicação entre o CodeSys e o Visual Components.

Para implementação da comunicação OPC-UA foi necessário configurar o servidor

OPC-UA no CodeSys, instalar o programa de interface de leitura de variáveis Matrikon,

identificar o servidor no Visual Components e parear as variáveis do CodeSys com as

variáveis do Visual Components.

4.3.1 CONFIGURAÇÃO CODESYS

Para se estabelecer um servidor OPC-UA no CodeSys deve-se instalar duas aplicações.

A primeira delas é o Matrikon FLEX OPC UA Server, onde será definida a interface de

Ethernet, endereço de IP, número da porta utilizada, número de sessões permitidas, taxa

de ciclo do servidor, politica de segurança e tipo de autenticação utilizada pelos clientes.

https://github.com/gabrielfeuerusp/TCC/blob/main/visual_components.py

25

A Figura 11 mostra a configuração do Matrikon FLEX OPC UA Server utilizada neste

trabalho.

Figura 11: Configuração do Matrikon FLEX OPC UA Server utilizada neste trabalho

A segunda aplicação é o Symbol Configuration, onde serão selecionadas as variáveis e

que tipo de acesso - leitura e escrita - que o CodeSys irá permitir. A Figura 12 mostra

as variáveis selecionadas e o tipo de acesso permitido, que no caso todas estão com per-

missão para leitura e escrita. Ou seja, os clientes OPC-UA poderão ler e alterar o valor

das variáveis.

Figura 12: Configuração do Symbol Configuration utilizada neste trabalho

26

Por último, o emulador do controlador deverá ser inicializado, seguido da inicialização

do programa da lógica de controle

4.3.2 CONFIGURAÇÃO MATRIKON

O Matrikon é o software utilizado para leitura das variáveis, gerando uma interface

gráfica onde é posśıvel ler e editar o valor das variáveis. Para sua utilização, deve-se

instalar na máquina o software Matrikon OPC UA Explorer.

Com a aplicação aberta, deve-se solicitar a adição de um novo servidor. Em seguida,

selecionar o método de conexão, que no caso deste trabalho será manual, onde a URL do

servidor do CodeSys deve ser fornecida.

Com a conexão estabelecida, basta criar um painel com as variáveis desejadas. Neste

painel será posśıvel ler e escrever o valor das variáveis que possuem permissão concedida

pelo Symbol Configuration no CodeSys. Um exemplo deste painel é apresentado na Figura

13.

Figura 13: Exemplo de painel para monitoramento e edição das variáveis

27

4.3.3 CONFIGURAÇÃO VISUAL COMPONENTS

A ultima etapa do estabelecimento da comunicação OPC-UA do projeto é feita no

Visual Components. Para isso, deve-se ir ao painel de conectividade e solicitar a adição de

um novo servidor OPC-UA. Em seguida, deve-se inserir a URL do servidor do CodeSys,

o mesmo utilizado no Matrikon e, se desejável, alterar as configurações da comunicação.

Em caso de sucesso no estabelecimento da comunicação OPC-UA entre servidor e cliente,

aparecerá um True (verdadeiro) na situação da conexão, conforme indicado na Figura 14.

Figura 14: Conexão do cliente do Visual Components com o servidor do CodeSys

Por último, deve-se parear as variáveis do Visual Components com as do CodeSys.

Para isso, primeiro deve-se indicar as variáveis que irão enviar informação da simulação

para o servidor no botão Simulation to server. Em seguida, deve-se indicar as variáveis

que irão receber informação do servidor para a simulação no botão Server to simulation.

No caso deste projeto, as variáveis pareadas em Simulation to server estão listadas

na Tabela 6. Já as variáveis pareadas em Server to Simulation estão listadas na Tabela 7

28

Tabela 6: Variáveis pareadas em Simulation to server

Visual Components CodeSys

DI0 DI0aux

DI1 DI1aux

DI2 DI2aux

DI3 DI3aux

DI4 DI4aux

DI5 DI5aux

DI6 DI6aux

Tabela 7: Variáveis pareadas em Server to simulation

Visual Components CodeSys

DO0 DO0aux

DO1 DO1aux

DO2 DO2aux

DO3 DO3aux

DO7 DO7aux

29

5 CONCLUSÃO

Para permitir um melhor aproveitamento, por parte dos alunos, das atividades de

laboratório, é interessante buscar formas de se levar a experiência restrita ao laboratório

à casa do aluno. Desta forma, o aluno poderá se preparar melhor para a atividade em

laboratório, não ficando restrito a um tempo determinado de aula. Além disso, em tempos

de pandemia e distanciamento social, pode-se adaptar as atividades de laboratório, sem

comprometer o aprendizado do aluno.

Este trabalho é o primeiro na Escola Politécnica da USP a propor a integração entre o

Codesys e o Visual Components com a finalidade de gerar uma simulação computacional

da movimentação das bancadas MPS FESTO. Por este motivo, com os resultados da

pesquisa aqui presente e com o resultado positivo do sistema aqui proposto; a disciplina

PMR3305 - Sistemas a Eventos Discretos poderá se beneficiar do conteúdo deste trabalho

através da implementação das bancadas virtuais nas próximas turmas.

Ainda é necessário o aprimoramento da simulação, modelando as demais bancadas

presentes no laboratório. Nesse sentido, é interessante que as modelagens sejam desenvol-

vidas de forma que exista compatibilidade entre os módulos, o que não foi entregue neste

trabalho. Esta compatibilidade deve permear formas de se parear componentes distintos,

possibilitando que a peça de trabalho percorra todos os módulos, assim como acontece

nas bancadas f́ısicas do laboratório.

30

REFERÊNCIAS

AGOPYAN, V. Novas medidas de restrição sobre coronav́ırus para a
comunidade. 2020. Dispońıvel em: hhttps://jornal.usp.br/institucional/
reitor-divulga-novas-medidas-de-restricao-sobre-coronavirus-para-comunidade-universitaria/
i.

ALVARENGA, D. Com pandemia, comércio eletrônico tem salto
em 2020 e dobra participação no varejo brasileiro. 2021. Dis-
pońıvel em: hhttps://g1.globo.com/economia/noticia/2021/02/26/
com-pandemia-comercio-eletronico-tem-salto-em-2020-e-dobra-participacao-no-varejo-brasileiro.
ghtmli.

BALL, K. The dawn of the programmable logic controller (plc). Spring 2015 Edition of
PULSE., 2015.

BONFATTI, F.; MONARI, P.; SAMPIERE, U. IEC 1131-3 programming methodology.
[S.l.]: Cj International, 1999.

COMPONENTS, V. About Us. 2021. Dispońıvel em: hhttps://www.visualcomponents.
com/about-us/i.

DORIA, J. Medida de quarentena do Decreto nº 64.881 - 22/03/2020. 2020. Dispońıvel
em: hhttps://www.al.sp.gov.br/repositorio/legislacao/decreto/2020/decreto-64994-28.
05.2020.htmli.

FONTOURA, C. R. de O. Using the process simulator in chemical engineering study: an
application in the beer production process. Brazilian Journal of Development, 2019.

HARARI, Y. N. Sapiens. [S.l.]: LPM, 2015.

IEC. International Standard. [S.l.], 2003.

LEWIS, R. Programming Industrial Control Systems Using IEC 1131-3. [S.l.]: The
Institution of Engineering and Technology, 2011.

MARTINS, E. R. Tecnologias, Métodos e Teorias na Engenharia de Computação.
Paraná, Brasil: Atena, 2020.

MIYAGI, P. E. Controle Programável. São Paulo, Brasil: Edgar Blucher, 1996.

NEUMANN, J. von. Statistical methods in neutron di↵usion. 1947.

OPC-FOUNDATION. What is OPC? 2021. Dispońıvel em: hhttps://opcfoundation.org/
about/what-is-opc/i.

POLA, D. F. S. R. Treinamento MPS FESTO. [S.l.], 2013.

31

ROSSOW, A. B. Integration of modeling and simulation tools using opc-ua protocol. XL
International Sodebras Congress, 2018.

TODORA, J. G. The PLC/PAC Tutorial. 2009. Dispońıvel em: hhttp://theplctutor.
com/history.htmli.

USPDIGITAL. Disciplina: PMR3305 - Sistemas a Eventos Discretos. 2016. Dispońıvel
em: hhttps://uspdigital.usp.br/jupiterweb/obterDisciplina?nomdis=&sgldis=pmr3305i.

VOGEL, M. et al. Petrijet platform technology: An automated platform for culture dish
handling and monitoring of the contents. Journal of Laboratory Automation, 2015.

