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RESUMO

A implementagao do coédigo de controle do CLP na bancada MPS FESTO na disci-
plina PMR3305 - Sistemas a Eventos Discretos - é o momento em que o aluno tem a
possibilidade de testar e visualizar o resultado do seu trabalho. Entretanto, as bancadas
s6 podem ser acessadas no laboratoério da POLI, o que foi dificultado durante a pandemia
do novo Corona Virus. Neste contexto, o objetivo desse trabalho é projetar e implementar
um modelo virtual de uma das bancadas MPS FESTO e uma sistematica para os alunos
usarem juntamente ao C'odeSys, de forma que possam testar a logica de controle desenvol-
vida em SFC - Sequential Function Charts - antes de ser implementado presencialmente
no laboratério de PMR3305 - Sistemas a Fventos Discretos.

Palavras-Chave — Petri Net, OPC-UA Protocol, Visual Components, FESTO Works-
tation, CodeSys, Digital twin, Programming CLP



ABSTRACT

The implementation of the control code of CLP in the MPS FESTO bench during
the PMR3305 discipline - Systems to Discrete Events - is a moment where the student
has the possibility to test and visualize the results of his own work. Nonetheless, the
benches can only be acessed in a POLI laboratory, which has been hampered during the
pandemic of the Corona Virus. In this scenario, the objective of this work is to simulate
virtually the MPS FESTO benches, in a way that the code developed in SFC - Sequential
Function Charts - that refers to the control system, can be studied and validated before
being implemented in person in the PMR3305 laboratory - Systems to Discrete Events.

Keywords — Petri Net, OPC-UA Protocol, Visual Components, FESTO Worksta-
tion, CodeSys, Digital twin, Programming CLP
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1 INTRODUCAO

Com a evolugao da computacao, através de hardwares e softwares com velocidades de
processamento e armazenamento cada vez maiores, a humanidade foi capaz de resolver
problemas complexos de forma mais rapida, como explicado por (HARARI, 2015). Uma
das formas de se resolver problemas complexos é por meio da simulacao computacional,
como em (NEUMANN, 1947) que é uma das primeiras publicagdes sobre o tema. Nela
os autores abordam o uso da simulacao computacional para resolver problemas proba-

bilisticos, no caso através de um método - Monte Carlo Simulation.

Com o passar dos anos, o desenvolvimento da computacao possibilitou uma ampli-
tude maior de opgoes para simulagoes em diferentes areas do conhecimento. Dentre esta
gama de aplicagoes comecou-se a utilizar o recurso das simulacoes computacionais para
propésitos educacionais, tanto em ensino superior quanto basico, como pode ser observado
em (FONTOURA, 2019), onde é proposto um simulador do processo de produgao de cer-
veja a ser utilizado pelos alunos de graduacao e pés-graduacao de engenharia quimica da
Universidade de Vassouras. A intencao é que os alunos possam acompanhar as respostas
do processo de produgao da cerveja sem a necessidade de implementé-lo, economizando

tempo e investimento financeiro.

1.1 CONTEXTO

Com a pandemia causada pelo novo Coronavirus (SARS-Cov-2) e a adogao do dis-
tanciamento social proposta por (DORIA, 2020) para o Estado de Sao Paulo, diversas
atividades presenciais - como comércio e ensino - foram impactadas e precisaram ser rein-
ventadas. No varejo, houve um aumento na demanda do chamado comércio eletronico,
ou e-commerce, como explicado por (ALVARENGA, 2021). Na educagao, escolas e facul-
dades tiveram suas portas fechadas, como foi o caso da Universidade de Sao Paulo (USP)
desde o anuncio de (AGOPYAN; 2020).

Na Escola Politécnica da USP (POLI), para nao comprometer o calendario escolar



e o aprendizado dos alunos, as disciplinas tiveram que se adaptarem ao modelo virtual
de ensino. Aulas expositivas puderam ser substituidas por videoconferéncias utilizando
ferramentas como Google Meets e Zoom. Provas e entregas de trabalho foram realizadas
por plataformas digitais de ensino, como o e-disciplinas. Porém, aulas praticas, como
experiéncias laboratoriais, exigiram maior expertise por parte dos docentes devido a difi-
culdade de se adaptar uma atividade laboratorial pratica em uma atividade virtual sem

comprometer o aprendizado.

A disciplina Sistemas a Eventos Discretos (PMR3305) lecionada no sexto semestre
do curso de graduacao em engenharia mecatronica da POLI é dividida em parte tedrica
e pratica como descrito em (USPDIGITAL, 2016). De forma resumida, na parte tedrica
sao apresentados aos alunos conceitos fundamentais de sistemas a eventos discretos, mo-
delagem de sistemas de controle sequenciais, Redes de Petri para logica de controle e
metodologia de projeto de sistemas de controle. Enquanto que na parte pratica, os alunos
participam da atividade de construcao de modelos de sistemas de automacao e analise
destes modelos por simulacao discreta, desenvolvimento de programas de controle para
controladores programaveis e, por fim, teste destes programas nas bancadas MPS FESTO.
Estas bancadas didaticas simulam uma pequena linha de producao e é nesta etapa em
que os alunos visualizam o resultado do trabalho de estruturar, modelar e implementar
a logica de controle; sendo este um momento de aprendizado e satisfacao dos alunos da

disciplina.

No cenario de pandemia apresentado, com aulas remotas, o corpo docente de PMR3305
teve a tarefa de lecionar a disciplina de forma virtual. Nos anos de 2020 e 2021, a parte
pratica consistiu em modelar as Redes de Petri com base nos requisitos das bancadas e
simular a Rede de Petri no software PIPE para verificacao das propriedades e existéncia
de travamentos. A validacao final, que costumava ser a implementacao nas MPS FESTO
em laboratorio, foi realizada pelo professor da disciplina que, por conta da experiéncia, ja

sabia se a Rede de Petri condizia com o funcionamento da bancada ou nao.

Em meio a este cenario, os alunos de PMR3305 nao tiveram a experiéncia de testar e
visualizar o funcionamento da légica de controle implementada na bancada, uma vez que

estavam restritos as aulas remotas.



1.2 MOTIVACAO

O trabalho desenvolvido apresenta motivacao académica e pessoal por parte do au-
tor que, como aluno do curso de engenharia mecatronica da Escola Politécnica da USP,
afetado pelas dificuldades impostas pelo ensino a distancia durante a pandemia do SARS-
Cov-2, gostaria de deixar aos demais alunos desta Escola um trabalho que possa ser
explorado e desenvolvido visando a melhoria continua da qualidade de ensino da POLI e

da formacao de colegas engenheiros.

1.3 OBJETIVOS

Este trabalho foi desenvolvido visando projeto e implementacao de uma ferramenta
que possibilite os alunos de PMR3305 a realizarem atividades laboratoriais sem a neces-

sidade da presenca fisica na Escola.

Ao longo do texto sera apresentado o processo de desenvolvimento de um sistema
funcional da simulagao computacional de uma bancada MPS FESTO, de modo que os
discentes possam testar a implementagao da logica de controle em linguagem SFC (Sequen-

tial Function Chart), através da visualizacao do funcionamento de um modelo animado
da bancada MPS FESTO.

1.4 ORGANIZACAO DO TEXTO

No capitulo 2 é apresenta a revisao bibliografica sobre as bases que apoiam este

projeto.
No capitulo 3 é feita a descricao do projeto, detalhando o sistema proposto.
No capitulo 4 é feita a descricao da implementacao do projeto.

Por fim, no capitulo 5 é apresentada a conclusao do projeto.



2 REVISAO BIBLIOGRAFICA

Para alcancar os objetivos deste trabalho, foi realizada uma revisao bibliogréfica sobre
topicos da disciplina PMR3305, como controladores l6gico programaveis e suas principais
linguagens de programacgao. Também foram estudados os softwares CodeSys e Visual
Components, por serem as ferramentas de implementacao do sistema. Além do estudo

sobre as bancadas MPS FESTO, que é o objeto a ser digitalizado.

2.1 CONTROLADORES LOGICO PROGRAMAVEIS

Existem registros de maquinas que operam com controle de sistema sequencial desde
o século XVIII, como citado em (MIYAGI, 1996), as maquinas de tear automdticas com
cartoes perfurados ou uma moenda automatica por esteira ja sao exemplos de sistemas a

eventos discretos.

No inicio, o controle de SED poderia ser reduzido por um “operador”, um “dispositivo
de controle” e um “objeto de controle”. Com a evolucao tecnoldgica, a partir dos anos
50, os SED passaram a trabalhar com conceitos de “monitoragao” e “atuacao”. Ou seja,

" 5o . : . :
o “operador” ira acompanhar o sistema por um painel de monitoramento e o objeto de
controle serd alterado por um sistema de atuacao, que responde a um dispositivo de

controle.

Em 1968, a divisao Hydramatic da General Motors (Estados Unidos) divulgou uma
especificagao técnica de dez itens (TODORA, 2009) para buscar empresas com interesse

de produzir o controlador programéavel. Sao eles:
e Os controladores devem ser facilmente programaveis, com operagoes sequenciais
facilmente alteraveis;
e Devem ser de facil manutencao;

e Devem possuir caracteristicas operacionais de alta confiabilidade;



e Devem possuir dimensoes menores que os painéis a relés para diminuicao de gastos;
e Deve ser apto a mandar dados para um sistema central;

e Deve ter preco competitivo em relagao aos dispositivos a relés;

e Deve receber sinais de entrada na ordem de 115V CA;

e Deve ser capaz de enviar sinais de saida de 115V CA;

e Devem possibilitar expansoes na forma de moédulos para atender sistemas de maior

porte;

e Cada unidade deve possibilitar a expansao de no minimo 4000 palavras na memoria

do programa.

Assim, em 1969, a Bedford Associates (Estados Unidos), langou o primeiro Controla-
dor Légico Programavel chamado 084 (BALL, 2015) seguindo as especificagoes divulgadas
pela divisao Hydramatic. A partir dos anos 70, as novas geragoes de controladores que se-

guiam essas especificagoes foram batizados de CLP’s - Controladores Logico Programaveis.

Como explicado em (MARTINS, 2020), um CLP é um dispositivo eletrénico para au-
tomagao. Composto por uma C.P.U., memodria e dispositivos (Input/Output), o CLP
¢ programavel afim de realizar tarefas de inter travamento, temporizagao, contagem,
operacoes matematicas, controle em malha aberta ou malha fechada; podendo contro-

lar sistemas industriais complexos.

Como explicado em (LEWIS, 2011), com a difusao dos CLP’s surgiram diversas nor-
mas para padronizar a programacao destes controladores, como a francesa NFC-03-190
e a alema DIN 40719-6. Entretanto, nenhuma destas normas foi tao impactante quanto
a IEC61131 da FElectrotechnical Comission, a primeira a receber aceitacao na industria
mundial. Para seu desenvolvimento foram montados times de especialistas, conforme
(IEC, 2003). Como indicado na Tabela 1, o time 3 ficou responsével pela tarefa de desen-
volver e padronizar as linguagens de programacao dos CLP’s, o que ficou conhecido como

norma [EC 61131-3.



Tabela 1: Partes da Norma IEC 61131

Time | Titulo Conteudo

1 General Information Terminologias e conceitos

2 Equipment requirements and | Verificacao e fabricacdo mecéanica e eletronica
tests

3 Programmable Languages Estrutura das linguagens do CLP

4 User guidelines Guia para escolha, uso e manutencao do CLP

) Communications Conectividade com outros dispositivos

6 Reserved Esta reservado

7 Fuzzy Control Programming Funcionalidades de software

8 Guidelines for the Application | Guias para implementar as linguagens da IEC
and Implementation of Pro- | 1131-3
gramming Languages

2.2 LINGUAGENS DE PROGRAMACAO PARA CLP’S

A normal IEC 61131-3 (IEC, 2003) separa as linguagens em dois grupos: Linguagens
Textuais e Linguagens Graficas. As Linguagens Textuais padronizadas sao a IL (Instruc-
tion List) e a ST (Structured Text). A IL é uma lista simples de comando, executando o
conjunto de funcoes declaradas de forma sequencial. Ja a ST é mais complexa, sendo uma
linguagem de alto nivel capaz de estruturar programas com processamentos numéricos,
operacoes de comparacao e comandos. As Linguagens Graficas padronizadas sao a LD
(Ladder Diagram) e a FBD (Function Block Diagram). A LD é uma linguagem bas-
tante difundida e se assemelha a notacao de diagramas de légicas de relés. Ja a FBD ¢é

constituida de blocos de fungoes que processam fluxos de dados.

A disciplina PMR3305 utiliza a linguagem SFC (Sequential Function Chart) para
automagao das Bancadas FESTO. Como discutido em (MIYAGI, 1996), a SFC nao é
considerada uma linguagem e sim um elemento comum de descri¢ao pela IEC 61131-3.
Entretanto, por ser tratada como linguagem pelos principais softwares para programagcao
de CLP’s - como o CodeSys - e por ser mencionada por (MIYAGI, 1996) como uma

linguagem gréfica de programacao, este trabalho ira se referir a SFC como linguagem.

A SFC é uma linguagem de programacao grafica baseada em GRAFCET, na qual o



programador consegue definir o comportamento sequencial do sistema de controle. Por
ser uma linguagem de facil utilizacao, ter poder de descrever problemas dinamicos e por
evitar ambiguidade, (BONFATTI; MONARI; SAMPIERE, 1999) descreve a SFC como

uma das principais linguagens.

2.3 CODESYS

Criado pela empresa S3 — Smart Software Solutions, o CodeSys é um software de
controle e automacao de CLP’s. Este programa possui uma versao gratuita e também é
utilizado em cursos de graduagao da Escola Politécnica da Universidade de Sao Paulo.
Contudo, nao apresenta uma interface grafica tri-dimensional que permita a observacao

dos processos.

O trabalho de (VOGEL et al., 2015) apresenta uma implementagdo completa desta
ferramenta juntamente com um simulador para criar um mecanismo de manejo de placas

de cultura utilizadas em laboratério por meio da légica de controle de Redes de Petri.

O CodeSys permite o interfaceamento com softwares de animagoes 3D, como o Visual

Components, por possuir um servidor para o estabelecimento de comunicacao OPC-UA.

2.4 VISUAL COMPONENTS

O Visual Components é um software para simulacao de manufaturas 3D. Segundo o
site institucional (COMPONENTS, 2021), o software foi desenvolvido em 1999 por Scott
Walter, Mika Anttila e Juha Renfors com o objetivo tornar a simulagao de manufaturas

3D mais acessivel as empresas do setor.

Em 2016, o software recebeu uma atualizagao, sendo renomeado como Visual Compo-
nents 4.0. Nessa nova versao, a aplicacao conta com uma Python API para programacao

da simulacao e compatibilidade para estabelecer comunicagao com server’s OPC-UA.

O Visual Components 4.0 existe apenas em versoes pagas, existindo um servidor de

licenga dentro da Escola Politécnica para uso educacional.



2.5 PROTOCOLO DE COMUNICACAO OPC-UA

O protocolo de comunicacao OPC-UA é um padrao para troca de dados dentro do
ambiente de automacao industrial, desenvolvido por (OPC-FOUNDATION, 2021). Para
funcionamento desta especificacao é necessario estabelecer um servidor - OPC' server - e
seus clientes - OPC Client - sendo viavel interagir com mais de um cliente simultanea-

mente.

Como explicado em (OPC-FOUNDATION, 2021), inicialmente o padrao foi desen-
volvido apenas para sistemas Windows. Tal restricao fez com que a OPC Foundation
aprimorasse o protocolo, criando a especificacago OPC-UA, a qual apresenta uma estru-

tura de plataforma aberta, sendo compativel com qualquer sistema.

Para mais informagoes sobre o protocolo de comunicagao OPC-UA, pode-se consultar
o caso de uso (ROSSOW, 2018) onde foi realizado a implementagao da comunicagao entre
duas ferramentas de modelagem, o OpenModelica e o Xcos. Ou pode-se consultar o
préprio site (OPC-FOUNDATION, 2021)

2.6 BANCADA MPS FESTO

As bancadas MPS FESTO simulam um modulo de producao individual, onde cada
um apresenta uma fungao diferente. As bancadas pode ser consultadas na Tabela 2,
construida com base nas informagoes dadas em (POLA, 2013). Vale pontuar que estao

presentes no laboratorio de Sistemas a Eventos Discretos apenas as bancadas 1,2,3,5 e 7.



Tabela 2: Descricao das FESTO MPS stations

Bancada | Nome Funcao

1 Distributing Fornecer pegas de trabalho

2 Testing Realiza a verificacdo da peca de acordo com
critérios estabelecidos

3 Processing Transporta as pecas por uma mesa giratéria,
realiza a indexagdao da peca e realiza uma si-
mulacao de usinagem no orificio da pega

4 Buffer Armazenar até 5 pecas

5 Sorting Realiza a classificagdo das pecas e as separa por
tipo ou por cor

6 Separating Realiza a separagao de pecas, baseado na pro-
fundidade do orificio, ou na altura da peca

7 Handling Realiza a manipulacao de pecas

8 Pick and Place Manipula pegas do tipo medidores

9 Fluidc Muscle Press Realiza o controle de pressao exercido pelo
musculo pneumatico

10 Punching Responsavel por furar a tampa do cilindro,

Cada bancada é composta por um controlador, um painel de controle e uma planta.

Considerando o principal objetivo deste trabalho, que é o desenvolvimento de um sistema

funcional de simulagao computacional de uma das bancada, os principais objetos de estudo

nas bancadas sao os sensores, atuadores e sinais gerados. Para isso foram levantados, com

base no (POLA, 2013), os atuadores, sensores e sinais da bancada Handling, que sera o

modulo de implementacao do trabalho.

O objeto do trabalho serda o médulo Handling, responsavel por manipular as pecas

entre células através de uma garra. Conforme Figura 1, o médulo Handling é composto

por uma garra com movimentacao de translacao em dois eixos, sendo possivel deslocar a

peca de trabalho do Mddulo buffer a rampa ou a préxima estacao.



Terminal I/O (034035)

Lista de Alocagao

Terminal de valvulas (526872)

Fixador (196965)

Sensor optico receptor (196964)

Figura 1: Médulo Handling

FONTE: (POLA, 2013)

A Figura 2 mostra os sinais de entrada e saida do médulo Handling

Rampa (653393)

Terminal de I/O Terminal de /O
Descricdo Descrigdo
Entradas digitais Saidas digitais (OUT)
(IN)
DIO Pega disponivel no buffer DOO Move g:gg%: i;:tr;(élér:)g para
. : Recua médulo Handling para
DI1 Médulo Handling na posigéo buffer DO 1 estagao anterior
D12 Médulo Handlir;gtrarga%osigao pro¥ima, DO 2 Avanga modulo da garra
DI3 Médulo Handling na posi¢éo da rampa DO 3 Abre garra
DI 4 Garra avangada DO 4
DI 5 Garra recuada DO 5
DI 6 Sensor da garra DO 6
DI7 Préxima estagéo livre DO7 Estacdo ocupada

Ja a Tabela 3 relaciona os sensores da planta com os sinais de entrada.

Figura 2: Sinais Handling

FONTE: (POLA, 2013)
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Tabela 3: Sinais de entrada e sensores

Sinal | Sensor

DI 0 | Sensor de posicao no buffer

DI 1 | Sensor de posi¢ao no curso horizontal da garra perpendicular
ao buffer

DI 2 | Sensor de posi¢ao no curso horizontal da garra perpendicular
a préxima estagao

DI 3 | Sensor de posi¢ao no curso horizontal da garra perpendicular
a rampa

DI 4 | Sensor de posicao para medir o avango da garra

DI 5 | Sensor de posi¢cao para medir recuo da garra

DI 6 | Sensor 6ptico na garra que identifica se a peca de trabalho
possui cor ou nao (cor preta)

DI 7 | Sinaliza se a proxima estacao de trabalho estd livre

11
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3 METODOLOGIA

O sistema deve simular o funcionamento da bancada MPS FESTO. Para isso, deve
existir um modelo capaz de simular os atuadores, sensores e sinais de entrada e saida da
bancada; e que troque informagoes com o software em que a légica de controle do CLP

estd implementada.

3.1 REQUISITOS

Dado que o objetivo do trabalho é simular o funcionamento da bancada MPS FESTO,

o projeto deve:

e Trabalhar com um modelo 3D similar a bancada fisica Handling existente no labo-

ratorio de Sistemas a Eventos Discretos.
e Reproduzir a animagao da movimentacao da bancada

e Gerar sinais de saida para o emulador do CLP, similares aos dos sensores reais da

bancada, detectando peca de trabalho ou posicoes pré estabelecidas dos atuadores.

e Transformar sinais de controle, provenientes do emulador do CLP, em movimento

dos atuadores ou peca de trabalho.

3.2 DESCRICAO DO SISTEMA

Primeiro, deve-se desenvolver o programa da légica de controle do CLP da bancada
escolhida. Para isso, pode-se primeiro modelar a légica de funcionamento em Rede de

Petri para identificar a existéncia de travamentos.

Para receber e enviar sinais para a animagcao, deve-se estabelecer um servidor OPC-
UA. No caso da utilizacao do CodeSys como software de programacao do CLP, basta

adicionar a aplicagao Symbol Configuration, selecionar as varidveis correspondentes aos
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sinais de entrada e saida do controlador e compilar. Em seguida, deve-se adicionar a
aplicacao Matrikon FLEX OPC UA server e configurar os parametros desejaveis para
se estabelecer a comunicacao OPC-UA, como a interface de FEthernet, endereco de IP,
nimero da porta a ser utilizada, nimero de sessoes requeridas, taxa de ciclo do servidor,

politica de seguranca e o tipo de autentificacao que sera requerida dos clientes OPC.

No programa em que a animacao foi implementada, deve-se solicitar acesso ao servidor
OPC-UA. No caso da utilizacao do Visual Components, deve-se ir na aba de conectividade,
adicionar um novo servidor OPC-UA, indicar o endereco do servidor desejado, informar o
tempo de leitura desejado e parear as variaveis do programa onde a légica de controle foi
implementada com os sinais configurados no modelo 3D da bancada. Por fim, a animagao

pode ser inicializada.

Para sumarizar, a estrutura do sistema descrito esta representada na Figura 3.

Programa de Programa de
implementacao da légica implementacao da légica
de controle de controle
Logica de controle —e - Sinais de entrada
v Servidor OPC-UA A

Sinais de saida - »  Animacao

Figura 3: Estrutura do sistema descrito
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4 IMPLEMENTACAO DO PROJETO

Para implementacao do projeto foram utilizados os software Visual Components, Co-
deSys e Matrikon. No Visual Components foi modelado a bancada Handling com seus
respectivos sensores e atuadores. Também foi nesse software que foi implementado o
coddigo em Python que gera a animacao 3D do modelo. No CodeSys foi implementado a
légica de controle em SFC. Ja o Matrikon foi utilizado para monitorar os sinais trocados
entre o CodeSys e o Visual Components por protocolo OPC-UA, com a finalidade de

facilitar a identificagao dos erros durante a implementacao.

4.1 IMPLEMENTACAO DA LOGICA DE CONTROLE

A implementagao da logica de controle foi realizada no Codesys, através da linguagem
grafica SFC. A escolha do software foi baseada sob duas abordagens: proximidade com
a experiencia real do laboratério, uma vez que este é o programa utilizado em sala de
aula; e compatibilidade para estabelecer comunicacao OPC-UA em sua mais nova versao.
A versao 2.3 do Codesys é a utilizada pelos alunos na matéria PMR3305. Porém, neste
projeto, sera utilizada a versao 3.5, também compativel com o controlador utilizado na
disciplina, o CPX-CEC. Entretanto, apenas a versao 3.5, possui um servidor para comu-
nicagao OPC-UA.

4.1.1 O PROGRAMA EM SFC

O programa desenvolvido é uma simplificacao do programa original disponibilizado
pela FESTO, dado que o foco da simulacao computacional proposta neste projeto é a
movimentacao dos atuadores responsaveis pela movimentacao do médulo, sendo ignorados
os sinais relativos a LED’s, botoes e telas. Sendo assim, os sinais utilizados no programa

sao apresentados na Tabela 4.
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Tabela 4: Sinais utilizados no programa

Sinal | fungao

DI 0 | Indica a disponibilidade da peca de trabalho no buffer

DI 1 | Indica que o moédulo esta na posicao do buffer

DI 2 | Indica que o moédulo esta na posicao da proxima estacao

DI 3 | Indica que o médulo esta na posicao da rampa

DI 4 | Indica que a garra esta avancada

DI 5 | Indica que a garra esta recuada

DI 6 | Indica se a pega de trabalho possui cor (nao é preta)

DI 7 | Indica que a préxima estagao de trabalho esta livre

DO 0 | Move o mddulo para a proxima estacao

DO 1 | Recua o médulo para a estacao anterior

DO 2 | Avanca a garra

DO 3 | Abre a garra

DO 7 | Indica que a estagao Handling esta ocupada

O programa desenvolvido conta com 13 estados. O primeiro deles é o Init, o estado de
inicializacao do programa, em que DO1 e DO7Y sao falsos. Com o sinal DI 0 verdadeiro -
disponibilidade da pega de trabalho no buffer - o programa avanca ao passo0. No passo0
DO2 e DO7 sao verdadeiros, gerando o comando de avanco da garra e indicando que a
estacao esta ocupada. Quando o sinal DI4 for verdadeiro - indicando que a garra esta
avancgada - o programa entra no passol. No passol DO3 é falso, encerrando o comando
de abertura da garra. Depois de 1 segundo, o programa entra no passo?2, com DO2
falso, encerrando o comando de avanco da garra. Com DI5 verdadeiro, indicando o recuo
completo da garra, o programa entra no passo3. A estrutura do programa descrito até o

passod pode ser verificada na Figura 4.
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Init

+D10aux

passol

+D14aux

passol

+ passol.t>T#ls

passo2

+D15aux

passo3

Figura 4: Estrutura do programa descrito até o passo3

Apés o passo3 existe duas transi¢oes. Se DI6 for verdadeiro, indicando cor (nao
preta) na pega de trabalho, o programa entra no passol1. Caso contrario, com DI6 falso,
indicando na@o cor (preta) na peca de trabalho, o programa entra no passo4. Tanto no
passoll quanto no passo4 DOO é verdadeiro, gerando o comando para movimentacao do
modulo para a proxima estacao. A transicao do passoll para o passol2 é o sinal DI2, o
qual indica que o mdédulo esta na posicao da préxima estacao. Ja a transicao do passo/
para o passod é o sinal DI3, que indica que o médulo esta na posicao da rampa. Tanto
no passol2 quanto no passod DOO é falso, encerrando o sinal que movimenta o médulo
para a préxima estacao. A transicao do passol2 para o passob é a negacao do sinal DI7,
indicando que a préxima estacao de trabalho esta livre. J& a transicao do passod para o
passo6 € sempre verdadeira, uma vez que nao existe uma condi¢ao que impeca a soltura
da peca de trabalho na rampa. A estrutura do programa descrito do passo8 ao passob

pode ser verificada na Figura 5.
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passo3
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l:|=| NCT DI6aux

passo4

llelDIGaux

passoll

+ DI2aux

passol2

+ NCOT DI7aux

Figura 5: Estrutura do programa descrito do passo3 ao passob

No passo6 DO2 é verdadeiro, gerando o sinal de avango da garra. Com DI4 verdadeiro,

sinal gerado quando a garra esta avancada, O programa entra no passo7, gerando DO3

verdadeiro, solicitando a abertura da garra. Depois de 1 segundo o programa entra no

passo9, onde DO2 é falso, parando o comando de avanco da garra. Com DI5 verdadeiro,

indicando o recuo da garra, o programa entra no passol0, onde DO1 é verdadeiro, recuando

a modulo para a estacao anterior. Com DI1 verdadeiro, indicando que o moédulo esta na

posicao do buffer, o programa retorna ao estado de Init. A estrutura do programa descrito

do passob ao passol2 pode ser verificada na Figura 6.
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passob

:+:DI4aux

passo7

c+:passo7.t>Tils

passo9

+DI5aux

passoll

:t:DIlaux
Init

Figura 6: Estrutura do programa descrito do passo6 ao passol?2

4.2 SIMULACAO 3D

Para a simulacao 3D da Bancada FESTO, foi escolhido o Visual Components. Este
é um software projetado para a modelagem e simulacao de modelos 3D, com grande
aplicacao na industria para planejamento de layout, simulacao de producao e verificagao

do funcionamento de CLP’s.

4.2.1 MODELO UTILIZADO

Para a simulagao gréfica, foi utilizado o modelo em CAD do médulo Handling dispo-
nibilizado pela FESTO. As pecas de trabalho foram construidas com base nas dimensoes
reais das utilizadas em laboratério. Também foi construida uma bancada para apoio da
peca de trabalho antes desta entrar no buffer. O modelo final utilizado pode ser verificado

na Figura 7 (vista frontal), Figura 8 (vista lateral) e Figura 9 (vista superior).



Figura 7: Vista frontal do modelo final utilizado

) (W

Figura 8: Vista lateral do modelo final utilizado
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.

Figura 9: Vista superior do modelo final utilizado

4.2.2 ESTRUTURA DA ANIMACAO

A estrutura da animacao é composta pela definicao de articulagoes, servos controla-

dores, sensores e sinais. O comportamento da estrutura ¢é definida em cédigo de Python.

4.2.2.1 ARTICULACOES

Foram quatro articulacoes definidas para a animacao do modelo:

Esteira_Garra: movimento no trilho, deslocando do buffer a proxima estacgao.

Elevador_Garra: movimento de sobe e desce do brago.

Garra_1: movimento de abre e fecha de um dos dentes da garra.

Garra_2: movimento de abre e fecha do outro dente da garra.

A articulacao Esteira_Garra é a maior na hierarquia de movimentacao, ou seja, todas
as outras articulacoes se movimentam em relagao a esta. Em seguida vem a articulagao

Elevador_Garra, contendo o movimento das articulagoes Garra_1 e Garra_2.

4.2.2.2 SERVOS CONTROLADORES

Foram definidos trés servos controladores para movimentar as articulagoes:
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e Servo_Esteira: controla o movimento da articulagao Esteira_Garra.
e Servo_Elevador: controla o movimento da articulacao Elevador_Garra.

e Servo_Garra: controla o movimento das articulagoes Garra_1 e Garra_2.

4.2.2.3 SENSORES

Foram definidos sete sensores para gerar os sinais de entrada do controlador:

e Sensor_Disponivel: verifica a disponibilidade da peca de trabalho no buffer.
e Sensor_Buffer: verifica se o brago esta na posigao do buffer.

e Sensor_Prox_Est: verifica se o braco esta na posicao da proxima estacao.

e Sensor_Rampa: verifica se o braco esta na posicao da rampa.

e Sensor_Garra_Avan: verifica se o braco estd avancado.

e Sensor_Garra_Recu: verifica se o brago estd recuado.

e Sensor_Cor: verifica se a peca de trabalho tem cor (nao preta).

Todos os sensores implementados no projeto sao sensores de volume, onde deve ser
definida uma &rea de leitura do sensor, o intervalo de medigao, a necessidade de se identi-
ficar algum material especifico e qual é o tipo de sinal atrelado. Todos os sensores foram
implementados com o mesmo intervalo de medigao, no caso 0.01 segundos. O Sensor_Cor

esta programado para detectar apenas pecas de cor azul.

Com relacao a ared de atuacao, ela é definida por dois eixos de coordenadas, se

formando entre os eixos X e Y.

A Figura 10 mostra a posicao das coordenadas globais de referencia utilizadas no

projeto.
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Figura 10: Coordenadas globais de referencia do projeto

A Tabela 5 descreve a posi¢ao dos dois planos cartesianos de cada sensor com relagao

as coordenadas globais.



Tabela 5: Posicao dos planos cartesianos com relagao as coordenadas globais
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Plano cartesiano | Sensor correspondente | X Y 7 Rx Ry Rz
DIO1 Sensor_Disponivel -399 695 922 0 0 0
DIO_2 Sensor_Disponivel -351 741 922 0 0 180
DI1_1 Sensor_Buffer -420 718 1163 | 0 0 0
DI1.2 Sensor_Buffer -362 718 1163 | 0 0 0
DI21 Sensor_Prox_Est -420 1082 1163 | 0 90 0
DI2.2 Sensor_Prox_Fst -362 1082 1163 0 0 0
DI3_1 Sensor_Rampa -420 907 1163 | 0 90 0
DI3_2 Sensor_Rampa -362 907 1163 0 90 0
DI4_1 Sensor_Garra_Avan -375 568 921 0 0 0
D142 Sensor_Garra_Avan -375 1254 | 921 0 0 0
DI5_1 Sensor_Garra_Recu -367 542 1110 | 0 0 0
DI5 2 Sensor_Garra_Recu -367 1254 | 1110 | O 0 0
DI6_1 Sensor_Cor -367 542 1110 | O 0 0
DI6_2 Sensor_Cor -375 1254 | 921 0 0 0

4.2.2.4 SINAIS

Foram definidos sete sinais de entrada:

e DIO:

e DII:

e DI2:

e DI3:

e DI4:

e DIb:

e DIG:

sinal booleano

sinal booleano

sinal booleano

sinal booleano

sinal booleano

sinal booleano

sinal booleano

atrelado ao Sensor_Disponivel.
atrelado ao Sensor_Buffer.
atrelado ao Sensor_Prox_Est.
atrelado ao Sensor_Rampa.
atrelado ao Sensor_Garra_Avan.
atrelado ao Sensor_Garra_Recu.

atrelado ao Sensor_Cor.
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Importante pontuar que nao foi implementado o sinal relativo ao DI 7 da logica de
controle implementada no CodeSys. Dado que o projeto é referente a simulagao de apenas
uma bancada, o sinal DI7 sera sempre falso, simulando como se a proxima bancada

estivesse sempre disponivel.

4.2.2.5 PYTHON SCRIPT

A ultima etapa da animagao 3D consiste em desenvolver um coédigo em Python para

programar os movimentos da bancada.

A biblioteca utilizada foi a vcSeript para utilizar os métodos de animacao do Visual

Components. No comeco do cddigo foram definidos os objetos.

O programa principal roda dentro da fungdo OnRun() em lago até que a aplicagao do
Visual Components se encerre. Os principais blocos do programa estao comentados para

facilitar a compreensao do codigo implementado.

O cédigo desenvolvido pode ser encontrado acessando este link.

4.3 COMUNICACAO OPC-UA

Para que o cédigo implementado em SFC no CodeSys possa gerar uma logica de
controle para a o modelo virtual da bancada MPS FESTO, é preciso estabelecer uma

comunicacgao entre o CodeSys e o Visual Components.

Para implementacao da comunicagao OPC-UA foi necessario configurar o servidor
OPC-UA no CodeSys, instalar o programa de interface de leitura de variaveis Matrikon,
identificar o servidor no Visual Components e parear as variaveis do CodeSys com as

variaveis do Visual Components.

4.3.1 CONFIGURACAO CODESYS

Para se estabelecer um servidor OPC-UA no CodeSys deve-se instalar duas aplicagoes.
A primeira delas é o Matrikon FLEX OPC UA Server, onde serd definida a interface de
Ethernet, endereco de IP, niimero da porta utilizada, nimero de sessoes permitidas, taxa

de ciclo do servidor, politica de seguranca e tipo de autenticacao utilizada pelos clientes.


https://github.com/gabrielfeuerusp/TCC/blob/main/visual_components.py
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A Figura 11 mostra a configuragao do Matrikon FLEX OPC UA Server utilizada neste

trabalho.

Communication Settings

@ Matrikon’| FLE X"

Hostname:

Get from device

Ethernet interface: IVW-Fi
IP address: 192.168.15.168
Port number: 4840 ?]

OPC UA Endpoint:

opc.tcp://192.168.15.168:4840

T

Number of sessions:

[10

3

Server cyclic rate, ms: llOOO

Security policy:
Authentication:

2

[ None

]

[ Anonymous

]

Figura 11: Configuragdo do Matrikon FLEX OPC UA Server utilizada neste trabalho

A segunda aplicacao é o Symbol Configuration, onde serao selecionadas as varidveis e

que tipo de acesso - leitura e escrita - que o CodeSys ird permitir. A Figura 12 mostra

as variaveis selecionadas e o tipo de acesso permitido, que no caso todas estao com per-

missao para leitura e escrita. Ou seja, os clientes OPC-UA poderao ler e alterar o valor

das varidveis.

‘ default

Changed symbol configuration will be transferred with the next download or online change

v‘ I Configure Symbol Rights ...

Symbols

= £] GVL

@ DIOaux
@ DIlaux
@ DI2aux
@ DI3aux
@ DI4aux
@ DISaux
@ DI6aux
@ DI7aux
$® DOOaux
¢ DOlaux
@ DO2aux
@ DO3aux
¢ DO7aux

AEFREANEEERERE

Figura 12: Configuracao do Symbol Configuration utilizada neste trabalho

Access Rights

SIS ISSS

Maximal

Attribute

Type

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

Members

Comment
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Por ltimo, o emulador do controlador devera ser inicializado, seguido da inicializacao

do programa da légica de controle

4.3.2 CONFIGURACAO MATRIKON

O Matrikon é o software utilizado para leitura das variaveis, gerando uma interface
grafica onde é possivel ler e editar o valor das variaveis. Para sua utilizagao, deve-se

instalar na maquina o software Matrikon OPC UA Ezplorer.

Com a aplicagao aberta, deve-se solicitar a adigdo de um novo servidor. Em seguida,
selecionar o método de conexao, que no caso deste trabalho serd manual, onde a URL do

servidor do CodeSys deve ser fornecida.

Com a conexao estabelecida, basta criar um painel com as varidveis desejadas. Neste
painel sera possivel ler e escrever o valor das variaveis que possuem permissao concedida
pelo Symbol Configuration no CodeSys. Um exemplo deste painel é apresentado na Figura
13.

Data View - 1

Display Name Session Name Value Source Timestamp  Server Timestamp
1 Dl0aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
2 Dllaux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
3 Dl2aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
4 DI3aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
5 Dl4aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
6 DI5aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
7 Dlbaux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
8 Dl7aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
9 DOOaux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
10 DOlaux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
11 DO2aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
12 DO3aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...
13 DO7aux OPCUAServer@Ma... false 2021-12-05 ... 2021-12-05 ...

Figura 13: Exemplo de painel para monitoramento e edi¢ao das varidveis
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4.3.3 CONFIGURACAO VISUAL COMPONENTS

A ultima etapa do estabelecimento da comunicacao OPC-UA do projeto é feita no
Visual Components. Para isso, deve-se ir ao painel de conectividade e solicitar a adi¢ao de
um novo servidor OPC-UA. Em seguida, deve-se inserir a URL do servidor do CodeSys,
o mesmo utilizado no Matrikon e, se desejavel, alterar as configuracoes da comunicacao.
Em caso de sucesso no estabelecimento da comunicacao OPC-UA entre servidor e cliente,

aparecerd um True (verdadeiro) na situacao da conexao, conforme indicado na Figura 14.

Properties

» Server Capabilities

Name

Connected True

Server opc.tcp://localhost:4840

Edit Connection...

Browse timeout

Read / write timeout

Subscription timeout

Figura 14: Conexao do cliente do Visual Components com o servidor do CodeSys

Por tultimo, deve-se parear as variaveis do Visual Components com as do CodeSys.
Para isso, primeiro deve-se indicar as variaveis que irao enviar informacgao da simulagao
para o servidor no botao Simulation to server. Em seguida, deve-se indicar as variaveis

que irao receber informacao do servidor para a simulacao no botao Server to simulation.

No caso deste projeto, as varidveis pareadas em Simulation to server estao listadas

na Tabela 6. Ja as varidveis pareadas em Server to Simulation estao listadas na Tabela 7



Tabela 6: Variaveis pareadas em Simulation to server

Visual Components | CodeSys
DIO DIOaux
DI1 DIlaux
DI2 DI2aux
DI3 DI3aux
DI4 DI4aux
DI5 DI5aux
DI6 DI6aux

Tabela 7: Variaveis pareadas em Server to simulation

Visual Components | CodeSys

DOO DO0Oaux
DO1 DOlaux
DO2 DO2aux
DO3 DO3aux

DO7 DO7aux
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5 CONCLUSAO

Para permitir um melhor aproveitamento, por parte dos alunos, das atividades de
laboratorio, é interessante buscar formas de se levar a experiéncia restrita ao laboratério
a casa do aluno. Desta forma, o aluno podera se preparar melhor para a atividade em
laboratério, nao ficando restrito a um tempo determinado de aula. Além disso, em tempos
de pandemia e distanciamento social, pode-se adaptar as atividades de laboratorio, sem

comprometer o aprendizado do aluno.

Este trabalho é o primeiro na Escola Politécnica da USP a propor a integragao entre o
Codesys e o Visual Components com a finalidade de gerar uma simulacao computacional
da movimentacao das bancadas MPS FESTO. Por este motivo, com os resultados da
pesquisa aqui presente e com o resultado positivo do sistema aqui proposto; a disciplina
PMR3305 - Sistemas a FEventos Discretos podera se beneficiar do conteuido deste trabalho

através da implementacao das bancadas virtuais nas préximas turmas.

Ainda é necessario o aprimoramento da simulagao, modelando as demais bancadas
presentes no laboratério. Nesse sentido, é interessante que as modelagens sejam desenvol-
vidas de forma que exista compatibilidade entre os médulos, o que nao foi entregue neste
trabalho. Esta compatibilidade deve permear formas de se parear componentes distintos,
possibilitando que a peca de trabalho percorra todos os mddulos, assim como acontece

nas bancadas fisicas do laboratério.
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